direct product, abelian, monomial, 2-elementary
Aliases: C23×C18, SmallGroup(144,113)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C23×C18 |
C1 — C23×C18 |
C1 — C23×C18 |
Generators and relations for C23×C18
G = < a,b,c,d | a2=b2=c2=d18=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, cd=dc >
Subgroups: 201, all normal (6 characteristic)
C1, C2, C3, C22, C6, C23, C9, C2×C6, C24, C18, C22×C6, C2×C18, C23×C6, C22×C18, C23×C18
Quotients: C1, C2, C3, C22, C6, C23, C9, C2×C6, C24, C18, C22×C6, C2×C18, C23×C6, C22×C18, C23×C18
(1 73)(2 74)(3 75)(4 76)(5 77)(6 78)(7 79)(8 80)(9 81)(10 82)(11 83)(12 84)(13 85)(14 86)(15 87)(16 88)(17 89)(18 90)(19 96)(20 97)(21 98)(22 99)(23 100)(24 101)(25 102)(26 103)(27 104)(28 105)(29 106)(30 107)(31 108)(32 91)(33 92)(34 93)(35 94)(36 95)(37 109)(38 110)(39 111)(40 112)(41 113)(42 114)(43 115)(44 116)(45 117)(46 118)(47 119)(48 120)(49 121)(50 122)(51 123)(52 124)(53 125)(54 126)(55 132)(56 133)(57 134)(58 135)(59 136)(60 137)(61 138)(62 139)(63 140)(64 141)(65 142)(66 143)(67 144)(68 127)(69 128)(70 129)(71 130)(72 131)
(1 40)(2 41)(3 42)(4 43)(5 44)(6 45)(7 46)(8 47)(9 48)(10 49)(11 50)(12 51)(13 52)(14 53)(15 54)(16 37)(17 38)(18 39)(19 60)(20 61)(21 62)(22 63)(23 64)(24 65)(25 66)(26 67)(27 68)(28 69)(29 70)(30 71)(31 72)(32 55)(33 56)(34 57)(35 58)(36 59)(73 112)(74 113)(75 114)(76 115)(77 116)(78 117)(79 118)(80 119)(81 120)(82 121)(83 122)(84 123)(85 124)(86 125)(87 126)(88 109)(89 110)(90 111)(91 132)(92 133)(93 134)(94 135)(95 136)(96 137)(97 138)(98 139)(99 140)(100 141)(101 142)(102 143)(103 144)(104 127)(105 128)(106 129)(107 130)(108 131)
(1 22)(2 23)(3 24)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 31)(11 32)(12 33)(13 34)(14 35)(15 36)(16 19)(17 20)(18 21)(37 60)(38 61)(39 62)(40 63)(41 64)(42 65)(43 66)(44 67)(45 68)(46 69)(47 70)(48 71)(49 72)(50 55)(51 56)(52 57)(53 58)(54 59)(73 99)(74 100)(75 101)(76 102)(77 103)(78 104)(79 105)(80 106)(81 107)(82 108)(83 91)(84 92)(85 93)(86 94)(87 95)(88 96)(89 97)(90 98)(109 137)(110 138)(111 139)(112 140)(113 141)(114 142)(115 143)(116 144)(117 127)(118 128)(119 129)(120 130)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
G:=sub<Sym(144)| (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,81)(10,82)(11,83)(12,84)(13,85)(14,86)(15,87)(16,88)(17,89)(18,90)(19,96)(20,97)(21,98)(22,99)(23,100)(24,101)(25,102)(26,103)(27,104)(28,105)(29,106)(30,107)(31,108)(32,91)(33,92)(34,93)(35,94)(36,95)(37,109)(38,110)(39,111)(40,112)(41,113)(42,114)(43,115)(44,116)(45,117)(46,118)(47,119)(48,120)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,132)(56,133)(57,134)(58,135)(59,136)(60,137)(61,138)(62,139)(63,140)(64,141)(65,142)(66,143)(67,144)(68,127)(69,128)(70,129)(71,130)(72,131), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,37)(17,38)(18,39)(19,60)(20,61)(21,62)(22,63)(23,64)(24,65)(25,66)(26,67)(27,68)(28,69)(29,70)(30,71)(31,72)(32,55)(33,56)(34,57)(35,58)(36,59)(73,112)(74,113)(75,114)(76,115)(77,116)(78,117)(79,118)(80,119)(81,120)(82,121)(83,122)(84,123)(85,124)(86,125)(87,126)(88,109)(89,110)(90,111)(91,132)(92,133)(93,134)(94,135)(95,136)(96,137)(97,138)(98,139)(99,140)(100,141)(101,142)(102,143)(103,144)(104,127)(105,128)(106,129)(107,130)(108,131), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,19)(17,20)(18,21)(37,60)(38,61)(39,62)(40,63)(41,64)(42,65)(43,66)(44,67)(45,68)(46,69)(47,70)(48,71)(49,72)(50,55)(51,56)(52,57)(53,58)(54,59)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104)(79,105)(80,106)(81,107)(82,108)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96)(89,97)(90,98)(109,137)(110,138)(111,139)(112,140)(113,141)(114,142)(115,143)(116,144)(117,127)(118,128)(119,129)(120,130)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)>;
G:=Group( (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,81)(10,82)(11,83)(12,84)(13,85)(14,86)(15,87)(16,88)(17,89)(18,90)(19,96)(20,97)(21,98)(22,99)(23,100)(24,101)(25,102)(26,103)(27,104)(28,105)(29,106)(30,107)(31,108)(32,91)(33,92)(34,93)(35,94)(36,95)(37,109)(38,110)(39,111)(40,112)(41,113)(42,114)(43,115)(44,116)(45,117)(46,118)(47,119)(48,120)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,132)(56,133)(57,134)(58,135)(59,136)(60,137)(61,138)(62,139)(63,140)(64,141)(65,142)(66,143)(67,144)(68,127)(69,128)(70,129)(71,130)(72,131), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,37)(17,38)(18,39)(19,60)(20,61)(21,62)(22,63)(23,64)(24,65)(25,66)(26,67)(27,68)(28,69)(29,70)(30,71)(31,72)(32,55)(33,56)(34,57)(35,58)(36,59)(73,112)(74,113)(75,114)(76,115)(77,116)(78,117)(79,118)(80,119)(81,120)(82,121)(83,122)(84,123)(85,124)(86,125)(87,126)(88,109)(89,110)(90,111)(91,132)(92,133)(93,134)(94,135)(95,136)(96,137)(97,138)(98,139)(99,140)(100,141)(101,142)(102,143)(103,144)(104,127)(105,128)(106,129)(107,130)(108,131), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,19)(17,20)(18,21)(37,60)(38,61)(39,62)(40,63)(41,64)(42,65)(43,66)(44,67)(45,68)(46,69)(47,70)(48,71)(49,72)(50,55)(51,56)(52,57)(53,58)(54,59)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104)(79,105)(80,106)(81,107)(82,108)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96)(89,97)(90,98)(109,137)(110,138)(111,139)(112,140)(113,141)(114,142)(115,143)(116,144)(117,127)(118,128)(119,129)(120,130)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144) );
G=PermutationGroup([[(1,73),(2,74),(3,75),(4,76),(5,77),(6,78),(7,79),(8,80),(9,81),(10,82),(11,83),(12,84),(13,85),(14,86),(15,87),(16,88),(17,89),(18,90),(19,96),(20,97),(21,98),(22,99),(23,100),(24,101),(25,102),(26,103),(27,104),(28,105),(29,106),(30,107),(31,108),(32,91),(33,92),(34,93),(35,94),(36,95),(37,109),(38,110),(39,111),(40,112),(41,113),(42,114),(43,115),(44,116),(45,117),(46,118),(47,119),(48,120),(49,121),(50,122),(51,123),(52,124),(53,125),(54,126),(55,132),(56,133),(57,134),(58,135),(59,136),(60,137),(61,138),(62,139),(63,140),(64,141),(65,142),(66,143),(67,144),(68,127),(69,128),(70,129),(71,130),(72,131)], [(1,40),(2,41),(3,42),(4,43),(5,44),(6,45),(7,46),(8,47),(9,48),(10,49),(11,50),(12,51),(13,52),(14,53),(15,54),(16,37),(17,38),(18,39),(19,60),(20,61),(21,62),(22,63),(23,64),(24,65),(25,66),(26,67),(27,68),(28,69),(29,70),(30,71),(31,72),(32,55),(33,56),(34,57),(35,58),(36,59),(73,112),(74,113),(75,114),(76,115),(77,116),(78,117),(79,118),(80,119),(81,120),(82,121),(83,122),(84,123),(85,124),(86,125),(87,126),(88,109),(89,110),(90,111),(91,132),(92,133),(93,134),(94,135),(95,136),(96,137),(97,138),(98,139),(99,140),(100,141),(101,142),(102,143),(103,144),(104,127),(105,128),(106,129),(107,130),(108,131)], [(1,22),(2,23),(3,24),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,31),(11,32),(12,33),(13,34),(14,35),(15,36),(16,19),(17,20),(18,21),(37,60),(38,61),(39,62),(40,63),(41,64),(42,65),(43,66),(44,67),(45,68),(46,69),(47,70),(48,71),(49,72),(50,55),(51,56),(52,57),(53,58),(54,59),(73,99),(74,100),(75,101),(76,102),(77,103),(78,104),(79,105),(80,106),(81,107),(82,108),(83,91),(84,92),(85,93),(86,94),(87,95),(88,96),(89,97),(90,98),(109,137),(110,138),(111,139),(112,140),(113,141),(114,142),(115,143),(116,144),(117,127),(118,128),(119,129),(120,130),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)]])
C23×C18 is a maximal subgroup of
C24⋊4D9 C24⋊C27 C24⋊43- 1+2
144 conjugacy classes
class | 1 | 2A | ··· | 2O | 3A | 3B | 6A | ··· | 6AD | 9A | ··· | 9F | 18A | ··· | 18CL |
order | 1 | 2 | ··· | 2 | 3 | 3 | 6 | ··· | 6 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 1 | ··· | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
144 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | ||||
image | C1 | C2 | C3 | C6 | C9 | C18 |
kernel | C23×C18 | C22×C18 | C23×C6 | C22×C6 | C24 | C23 |
# reps | 1 | 15 | 2 | 30 | 6 | 90 |
Matrix representation of C23×C18 ►in GL4(𝔽19) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 18 | 0 |
0 | 0 | 0 | 1 |
18 | 0 | 0 | 0 |
0 | 18 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
18 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 18 |
8 | 0 | 0 | 0 |
0 | 8 | 0 | 0 |
0 | 0 | 8 | 0 |
0 | 0 | 0 | 3 |
G:=sub<GL(4,GF(19))| [1,0,0,0,0,1,0,0,0,0,18,0,0,0,0,1],[18,0,0,0,0,18,0,0,0,0,1,0,0,0,0,1],[18,0,0,0,0,1,0,0,0,0,1,0,0,0,0,18],[8,0,0,0,0,8,0,0,0,0,8,0,0,0,0,3] >;
C23×C18 in GAP, Magma, Sage, TeX
C_2^3\times C_{18}
% in TeX
G:=Group("C2^3xC18");
// GroupNames label
G:=SmallGroup(144,113);
// by ID
G=gap.SmallGroup(144,113);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,118]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^2=d^18=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,c*d=d*c>;
// generators/relations